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Overview

What is robust design?

Why is it different for simulation experiments?

How can it improve decision-making?

Where can we go from here?
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Robust design philosophy

We have a model of a system
     (simulation model, analytic model,
     statistical model, physical prototype)
on which we can perform experiments
and collect performance information.

The decision maker has specified
  *  performance measure (Y)
  *  performance ‘target value’ (τ)
  *  goal associated with Y, τ
           e.g., the smaller (or bigger) the better
           the closer to target the better

Y  is affected by
  *  decision factors(x)
          controllable
  *  internal / external noise factors (w)
          uncontrollable or controllable only
         at great expense

target 1

target 3

target 2 target 3



target

robust
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Robust design philosophy

Goal is achieved via a loss function
e.g.

where c is a cost-conversion constant

Then, taking expectation over the
noise space      we find

                   can be thought of as the
loss to society (long run business loss)
associated with a particular design x

The robust design is that which
minimizes expected loss

� (yx) = c (yx − τ)2
�

Ω

EΩ [� (yx)] = c
[
σ2

y + (µy − τ)2
]

EΩ [� (yx)]
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Robust design benefits

Benefits of robust design include:

  *  fewer surprises moving from ‘lab’
      to implementation

  *  better communication between
      analyst and client via expected loss

  *  ability to evaluate trade-offs
     between noise reduction costs &
     performance quality

  *  facilitates continuous improvement

   * better decisions

       simultaneously improve
       performance and decrease costs!

Other benefits in simulation:

 *  treats variability as a critical
     component of performance
            not solely a nuisance when
            estimating E[Y],  to be
            overcome by larger samples

  *  rapid model evaluation and
     scenario analysis
     (more efficient than trial-and-error)

  *  ability to test whether model
      performance is highly sensitive
      distribution ‘parameters’

   * ability to test whether component
     models need more detail, or
     whether changing a component
     will materially affect performance
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Response surface approach for quantitative decision factors

Designed experiment, can use different data
collection plans for decision factor & noise
spaces

plan for x:  allow estimation of quadratic &
interaction terms
e.g., 3-level factorials, central
      composite designs,  Box-Behnken

plan for w:  many possibilities, less concern
for detail
     e.g., 2-level fractional factorials,
     frequency domain oscillation

design for simulation-specific ‘artificial
factors’ may enhance efficiency
e.g., common / antithetic random numbers

can cross or combine these plans to come
up with final plan

Approach:

1.  Select performance measure(s)
        metrics & stat summaries to be used

2.  Specify target value and loss function

3.  Identify factors, regions of exploration
        classify as decision, noise or artificial

4.  Plan experiment

5.  Conduct experiment

6.   Analyze results
        collapse data over noise space, construct
        regression metamodels for µy, log(σy)

7.  Refine metamodel
        parameters in metamodel should have
        effects greater than noise threshold

8.  Select and confirm choice of x
       metamodels/contour plots suggest
        desirable x, confirm w/ extra runs for
        previously unexamined designs

{
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The simulation environment: what’s different?

Robust design for simulation

simulation model of product, process
or system

many factors / many potential designs

E[Y] highly nonlinear, interactions
expected (response surface methods)

input: random number seeds
output: correlated data streams

inherent variability remains, may also
be function of x

one run or batch
(appropriate run/batch sizes?)

simulation-specific factors in data
collection, innovative approaches
possible

either data or analyst may be the
most expensive

Taguchi’s robust design

physical product prototypes

few factors / few potential designs

E[Y] is a linear function of x, main
effects only (ANOVA)

i.i.d. Normal, no time dependence

completely removed once w specified;
unequal variance results from (unfit)
interactions between x and w

single data point

"Orthogonal arrays" or 2-level
factorials

data expensive -> few data pts

setting

x, w

model

noise structure

variability

unit of analysis

data collection

data cost
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Example: job shop

Three types of jobs (exponential interarrivals)

Differences by job type allowed for
  *  processing times (gamma),
  *  machine routings (fixed), and
  *  batch setup times (fixed)

FIFO queues form if all machines at a station
are busy

Performance: time in system (τ = 10 hrs)

Loss:  scaled squared error

1

2

3

4

5

job arrivals over time

�s (yx) = � (yx) /c = (yx − τ)2
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Job shop experiment

Data collection

Parameters:
   M1, M2, M3, M4 :  # machines at stations 1-4

   B:  common batch size

        25-1 resolution V design
        augmented with 2 center pts (18 pts)

Noise factors:
   PJ1, PJ2 :  proportion jobs of types 1, 2

        22 factorial (4 pts)

Crossed design: 18 x 4 = 72 configurations

Output:  18 pairs

Metamodels

Initial (full):  5 main effects, 10 interactions,
     1 quadratic

  R2 > .999 for both µ, ln(σ2) metamodels

Final: (after augmenting with 6 configs)

  µ metamodel:
    3 main effects, 2 interactions, 2 quadratic

    R2 = .969, (adjusted = .955)
    all included terms have p < .01,
    no excluded term has p < .05

  ln(σ2) metamodel:
    2 main effects, 1 interaction, 1 quadratic

    R2 = .979 (adjusted=.974),
    all included terms have p < .01,
    no excluded term has p  < .05

(
Y i·, s2

i·
)



Selection
criterion

Low loss

Low mean

Low variance

Low loss from first
18 configurations

Specifying the cost coefficient c allows direct computation of total cost of machine + loss:
   config x1 = (2,4,3,4,5) has scaled loss 5.33, while x2 = (2,5,3,4,5) has scaled loss 6.01

   Let k2 = machine cost at station 2, then x1 preferred to x2  if  k2 / c > .68
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Selected systems

Configuration(s)
 B    M1   M2   M3   M4

  2        5      3      4       5

  1        5     3-4   4-6     5

  3        5     3-4   4-6     3

  3        5     3-4   4-6     4

  3        5     3-4   4-6     5

 1        5      3      6       5

# machines
stations 1-4

17

17-20

15-18

16-19

17-20

19

Scaled Loss
(90% CI), validation

5.33
(4.43, 5.87), 5.66

8.03  57% worse!
(7.50, 8.64), 7.64-7.67

6.84  28% worse!
(6.03, 7.73), 6.99-7.16

6.34
(5.63, 7.13), 6.76-6.93

5.90
(5.22, 6.62), 6.65-6.95

7.61  43% worse!
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Phase II: Variance attribution
interesting questions we can answer

Model complexity assessment:
Setup time was modeled as fixed for given
job/machine combos, but it’s random.
Does this matter?

Data needs assessment:
Mean interarrival time, mean processing times
are estimates.  Does this matter?

Assessing environmental changes:
Marketing dept. thinks volatility for Product 1
demand will rise.  What’s the impact?

Assessing decision factor changes:
How much would performance suffer if we
removed one machine from station 3?

Effective use of limited budget: best option?
(a)  Refurbish station 1 machines for $16K
each, reducing processing times by 10%,
(b)  Replace station 1 machines for $35K each,
reducing processing times by 30%
(c)  Install new fixtures for $3K each, reducing
setup times by 20%

1.  Select noise factors
     decision factor deviation from
     nominal is considered noise

2.  Plan the experiment
     one plan, 2 or 3 levels per factor

3.  Conduct experiment

4.  Assess system capability
     estimate overall mean, variance

5.  Construct metamodels
     include inherent system variability

6.  Assess sensitivity
     which noise sources propagate?

7.  Evaluate current configuration
     which noise sources propagate?

8.  Evaluate alternatives
     how do we improve the system?
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Variance attribution details

Idea:  a little work up front will save
time, effort later on
   we can answer questions using the
   metamodel results, without rerunning
   the simulation model unnecessarily!

The j th run in the sampling plan yields
output             (after suitable
truncation)

Fit metamodels

Estimate the system variance

Assess transmitted variances as
   *  % of total variance
   *  % of non-inherent variance

system may amplify
                 or dampen
          noise factor variance

Y j , sj

changes in
mean

changes in
inherent variance

µ̂ = β̂0 +
w∑

i=1

β̂iWi

σ̂ = γ̂0 +
w∑

i=1

γ̂iWi

V ar(Y ) ≈ γ̂2
0 +

w∑
i=1

(
β̂2

i + γ̂2
i

)
V ar(Wi)

}
inherent transmitted
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Job shop experiment...

Factors:

PJ1, PJ2: proportion jobs of type 1, 2

M3:  # machines at station 3

IA:  interarrival time mean

αt1: processing time multiplier at station 1

αs: setup time multiplier

Sampling plan:

nearly-saturated factorial (8 runs)

Factor

Inherent

M3
PJ1

PJ2
αt1

IA
αs

Total

Trans.
Var

4.811

.013

.004

---

.033

.019

.063

4.943

% of
total

97.3

.3

.1

---

.7

.4

1.3

100

% non-
inherent

9.6

3.3

---

24.8

14.7

47.6

100



% of
total

97.3

.3

.1

--

.7

.4

1.3

100

Factor

Inherent
M3

PJ1

PJ2

αt1
IA
αs

Total
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Job shop results...

Model complexity assessment:
Setup time was modeled as fixed
for given job/machine combos,
but it’s random. Does this
matter?

Data needs assessment:
Mean interarrival time, mean
processing times are estimates.
Does this matter?

PROBABLY NOT -- changes in
these factors have a relatively
small impact on total system
variance, though setups have
most

Assessing environment:
Marketing thinks the volatility
for Product 1 demand will rise.
What’s the impact?

ALMOST NONE:  doubling
the demand variability
doubles the transmitted
variance, but increase is
only 0.1% of total



Effective use of limited budget:
which of these is the best option?
(a)  Refurbish, reduce proc times 10% ($48K)
(b)  Replace, reduce proc times 30% ($105K)
(c)  New fixtures, reducing setups 20% ($57K)

Lossinit = 3[(11.075 - τ)2 + 4.923] = $18.29/unit

Loss(a) = 3[(10.840 - τ)2 + 4.937] = $17.21/unit

Loss(b) = 3[(10.531 - τ)2 + 4.926] = $15.63/unit

Loss(c) = 3[(10.071 - τ)2 + 4.903] = $14.72/unit

Over a 5-year time horizon (41,667 units),
  (a)  net loss of $3K
  (b)  net savings of $5.8K
  (c)  net savings of $91.8K
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Still more job shop results...

Assessing decision factors:
How much would performance suffer if we
removed one machine from station 3?

Needed:  cost conversion constant, e.g.,
$300/unit for a 1-day (10 hr) dev from target

        -> c = $3 per hr2 per unit

Current system:
   mean = 11.075
   var = 4.943

   E[loss] = 3(1.0752 + 4.943) = $18.29/unit

New system:
   mean = 11.188
   var = 4.930

   E[loss] = 3(1.1882 + 4.930) = $19.02/unit

Cost?  $0.73 per unit, or about $29 per day



Tolerance analysis for portfolio segment:
   fixed rate, uninsured S Cal new loans
   with initial balance < $150,000

1.  Assess impact of 61 fitted coefficients
     for several performance measures
     nearly saturated 2-level factorial, 64 runs
     coefficient levels at fitted +/- std. dev.

Coeff. group

Transitions from
   Current
   Delinq 30-89 days
   Delinq 90+ days

Loss

Severity

Total

pct
default

   86
0

   14

0

0

100

pct
loss

   55
0

   5

40

0

100

time on
books

   66
0

   32

1

0

100

Transmitted Variance%
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Example: home mortgage portfolio forecast model

Setting:

18-month project with top 10 financial
institution to set up forecasting system
for portfolio of over 90,000 loans,
making use of
  *  loan characteristics
  *  market conditions

Semi-markov model with three
components:
  *  state transition (multinomial logit)
  *  loss or no-loss on defaults (logit)
  *  proportion lost (regression)

When finished, 146 fitted coefficients
   1 hour / run on campus Sparc
   9 hrs  / run on client machine
   up to 4 days / run on campus IBM



Factor group

    Unemploymt
    Mkt apprec

    Conv. rate

    Loan/Value
    Loan amount

    Interest rate

    Term

    Total

pct
default

69.6

    0.2

23.2

    6.6

    0.4

100.0

pct
loss

82.5

    0.3

11.8

    5.0

    0.4

100.0

time on
books

56.4

    3.6

26.7

    5.0

    8.3

100.0

Transmitted Variance%

Average Portfolio Performance
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Portfolio forecast model results

2. Assess relative importance of certain
loan and market characteristics

   needed sampling plans, analysis
   appropriate for correlated noise factors

-1 -0.5 0.5 1

-1

-0.5

0.5

1

W
2

correlated



Applications:
*  Selection / sensitivity for particular system
*  Rapid model / system assessment

Extensions:
*  Robust selection for qualitative systems
      P(correct selection), P(good selection)
      fully sequential procedures

*  Rare event simulation
      procedures that prefer sampling contenders,
      sample path generation

Efficient procedures
* Data expensive: fully sequential procedures,
      exploit artificial factors such as batch overlap,
      common / antithetic sampling, control variates

*  Analyst expensive:  automated sampling plan
      generation,within-run noise factor plans
      (frequency domain oscillation)

Structural issues:
*  Impact of various loss functions
        guidelines for specific problem classes

*  Correlated decision factors

*  Other metamodel structures
        splines, radial basis functions,...

Other
*  Explore robust design in conjunction
   with optimization models
        relation to stochastic programming?

*  Local use of global metamodels
       when should you refit a global model
            with new local data?
        when should you narrow model scope?

*  Robustness with feedback
        can results be obtained when ‘‘noise" is
        really enemy’s strategic decision?
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Where can we go from here?
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Summary

Robust design is a great way to analyze models of complex systems because

  *  It is flexible:  can be applied to models which are analytic, statistical,
        terminating or non-terminating simulations, or physical models

  *  It is efficient:  it can indicate when model components have sufficient detail,
        sampling plans can be chosen to keep either data requirements or analysts’
        time and effort low

  *  Solutions are realistic by design: suggested system configurations have
        shown they’ll behave well over a broad range of adverse conditions

  *  It facilitates continuous improvement: it clearly indicates important
        determinants of system variance, guides efforts for system ‘optimization’ and
        improvement by conveying hidden costs to decision-makers



Susan M. Sanchez page 20

Related Papers

Ramberg, J. S., S. M. Sanchez, P. J. Sanchez, and L. J. Hollick (1991),
‘‘Designing Simulation Experiments: Taguchi Methods and Response
Surface Metamodels,’’   Proceedings of the 1991 Winter Simulation
Conference, 167--176.

Ramberg, J. S., J. J. Pignatiello, Jr. and S. M. Sanchez (1992),  ‘‘A
Critique and Enhancement of the Taguchi Method.’’  ASQC Quality
Congress Transactions, May, 491--498.

Schruben, L. W., S. M. Sanchez,  P. J. Sanchez and V. A. Czitrom
(1992),  ‘‘Variance Reallocation in Taguchi’s Robust Design
Framework,’’  Proceedings of the 1992 Winter Simulation Conference,
548--556.

Sanchez, S. M., J. S. Ramberg,  J. Fiero, and J. J. Pignatiello, Jr.
(1993),   ‘‘Quality by Design.’’  Chapter 10 in Concurrent Engineering:
Automation, Tools, and Techniques,  ed. A. Kusiak. John Wiley and
Sons: NY, 235--286.

Sanchez, S. M.  (1994).  ‘‘A Robust Design Tutorial.’’  Proceedings of
the 1994 Winter Simulation Conference, 106--113.

Sanchez, S. M. (1994).  ‘‘Experiment Designs for System Assessment
and Improvement when Noise Factors are Correlated.’’  Proceedings
of the 1994 Winter Simulation Conference,  290--296.

Sanchez, S. M., L. D. Smith and E. C. Lawrence (1996).  ‘‘Sensitivity
and Scenario Analysis for Simulation Metamodels.’’  Proceedings of
the 1996 Winter Simulation Conference, 1440--1447.

Sanchez, S. M., P. J. Sanchez, J. S. Ramberg and F. Moeeni (1996).
‘‘Effective Engineering Design Through Simulation.’’  International
Transactions on Operational Research, Vol. 3, No. 2,  169--185.

Smith, L. D., S. M. Sanchez and E. Lawrence (1996).  ‘‘A
Comprehensive Model for Managing Credit Risk and Forecasting
Losses on Home Mortgage Portfolios.’’   Decision Sciences, Vol. 27,
No. 2, 291--317.

Lawrence, E. C., L. D. Smith and S. M. Sanchez (1996),  ‘‘Managing
Credit Risk in a Changing Economy,’’  Bankers Magazine,
January/February issue, 58--63.

Moeeni, F., S. M. Sanchez and A. J. Vakharia (1997).  ‘‘A Robust
Design Methodology for Kanban System Design.’’  International
Journal of Production Research, Vol. 35, No. 10, 2821--2838.

Sanchez, S. M., P. J. Sanchez, and J. S. Ramberg (1998).  ‘‘A
Simulation Framework for Robust System Design.’’ Chapter 12 in
Concurrent Design of Products, Manufacturing Processes and
Systems,  ed. B. Wang. Gordon and Breach, NY: 279--314.

Sanchez, S. M. and P. Konana (2000). ‘‘Efficient Data Allocation for
Frequency Domain Experiments.’’  Operations Research Letters 26(2),
81-89.

Sanchez, S. M., L. D. Smith and E. C. Lawrence (2000).  ‘‘Tolerance
Design Revisited: Assessing the Impact of Correlated Noise Factors."
Working paper, University of Missouri -- St. Louis (under review).


